Similarity and Error Intercomparison of the GPM and Its Predecessor-TRMM Multisatellite Precipitation Analysis Using the Best Available Hourly Gauge Network over the Tibetan Plateau
نویسندگان
چکیده
The performance of Day-1 Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) and its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 Version 7 (3B42V7), was cross-evaluated using data from the best-available hourly gauge network over the Tibetan Plateau (TP). Analyses of three-hourly rainfall estimates in the warm season of 2014 reveal that IMERG shows appreciably better correlations and lower errors than 3B42V7, though with very similar spatial patterns for all assessment indicators. IMERG also appears to detect light rainfall better than 3B42V7. However, IMERG shows slightly lower POD than 3B42V7 for elevations above 4200 m. Both IMERG and 3B42V7 successfully capture the northward dynamic life cycle of the Indian monsoon reasonably well over the TP. In particular, the relatively light rain from early and end Indian monsoon moisture surge events often fails to be captured by the sparsely-distributed gauges. In spite of limited snowfall field observations, IMERG shows the potential of detecting solid precipitation, which cannot be retrieved from the 3B42V7 products.
منابع مشابه
Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China
As the successor of the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission significantly improves the spatial resolution of precipitation estimates from 0.25 ̋ to 0.1 ̋. The present study analyzed the error structures of Integrated Multisatellite Retrievals for GPM (IMERG) monthly precipitation products over Mainland China from March 2014 to February 20...
متن کاملSummer Precipitation Frequency, Intensity, and Diurnal Cycle over China: A Comparison of Satellite Data with Rain Gauge Observations
Hourly or 3-hourly precipitation data from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite products and rain gauge records are used to characterize East Asian summer monsoon rainfall, including spatial patterns in June–August (JJA) mean precipitation amount, frequency, and intensi...
متن کاملSimilarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China
[1] Similarities and differences of spatial error structures of surface precipitation estimated with successive version 6 (V6) and version 7 (V7) Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) algorithms are systematically analyzed through comparison with the China Meteorological Administration’s national daily precipitation analysis from June 2008 to Ma...
متن کاملMeasurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges
The complex problem of quantitative precipitation estimation in the Alpine region is tackled from four different points of view: (1) the modern MeteoSwiss network of automatic telemetered rain gauges (GAUGE); (2) the recently upgraded MeteoSwiss dual-polarization Doppler, ground-based weather radar network (RADAR); (3) a real-time merging of GAUGE and RADAR, implemented at MeteoSwiss, in which ...
متن کاملEstimating IDF based on daily precipitation using temporal scale model
The intensity –duration –frequency (IDF) curves play most important role in watershed management, flood control and hydraulic design of structures. Conventional method for calculating the IDF curves needs hourly rainfall data in different durations which is not extensively available in many regions. Instead 24-hour precipitation statistics were measured in most rain-gauge stations. In this stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016